A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: Constrained and unconstrained approach

نویسنده

  • M. H. Afshar
چکیده

This paper describes the application of the newly introduced Continuous Ant Colony Optimisation Algorithm (CACOA) to optimal design of sewer networks. Two alternative approaches to implement the algorithm is presented and applied to a storm sewer network in which the nodal elevations of the network are considered as the decision variables of the optimisation problem. In the first and unconstrained approach, a Gaussian probability density function is used to represent the pheromone concentration over the allowable range of each decision variable. The pheromone concentration function is used by each ant to randomly sample the nodal elevations of the trial networks. This method, however, will lead to solutions which may be infeasible regarding some or all of the constraints of the problem and in particular the minimum slope constraint. In the second and constrained approach, known value of the elevation at downstream node of a pipe is used to define new bounds on the elevation of the upstream node satisfying the explicit constraints on the pipe slopes. Two alternative formulations of the constrained algorithm are used to solve a test example and the results are presented and compared with those of unconstrained approach. The methods are shown to be very effective in

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FORCED WATER MAIN DESIGN MIXED ANT COLONY OPTIMIZATION

Most real world engineering design problems, such as cross-country water mains, include combinations of continuous, discrete, and binary value decision variables. Very often, the binary decision variables associate with the presence and/or absence of some nominated alternatives or project’s components. This study extends an existing continuous Ant Colony Optimization (ACO) algorithm to simultan...

متن کامل

A mathematical model for designing optimal urban gas networks, an ant colony algorithm and a case study

Considering the high costs of the implementation and maintenance of gas distribution networks in urban areas, optimal design of such networks is vital. Today, urban gas networks are implemented within a tree structure. These networks receive gas from City Gate Stations (CGS) and deliver it to the consumers. This study presents a comprehensive model based on Mixed Integer Nonlinear Programming (...

متن کامل

An Ant-Colony Optimization Clustering Model for Cellular Automata Routing in Wireless Sensor Networks

High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents an inclusive evolutionary reinforcement method. The proposed approach is a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every agent...

متن کامل

CONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM

A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...

متن کامل

Multicast computer network routing using genetic algorithm and ant colony

Due to the growth and development of computer networks, the importance of the routing topic has been increased. The importance of the use of multicast networks is not negligible nowadays. Many of multimedia programs need to use a communication link to send a packet from a sender to several receivers. To support such programs, there is a need to make an optimal multicast tree to indicate the opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Advances in Engineering Software

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2010